ASYMPTOTIC DIMENSION AND ASYMPTOTIC PROPERTY C by Lauren
نویسندگان
چکیده
منابع مشابه
A Hurewicz-type Theorem for Asymptotic Dimension and Applications to Geometric Group Theory
We prove an asymptotic analog of the classical Hurewicz theorem on mappings that lower dimension. This theorem allows us to find sharp upper bound estimates for the asymptotic dimension of groups acting on finitedimensional metric spaces and allows us to prove a useful extension theorem for asymptotic dimension. As applications we find upper bound estimates for the asymptotic dimension of nilpo...
متن کاملOn Transfinite Extension of Asymptotic Dimension
We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as ...
متن کاملThe Asymptotic Dimension of a Curve Graph Is Finite
We find an upper bound for the asymptotic dimension of a hyperbolic metric space with a set of geodesics satisfying a certain boundedness condition studied by Bowditch. The primary example is a collection of tight geodesics on the curve graph of a compact orientable surface. We use this to conclude that a curve graph has finite asymptotic dimension. It follows then that a curve graph has proper...
متن کاملAsymptotic Behaviour and Artinian Property of Graded Local Cohomology Modules
In this paper, considering the difference between the finiteness dimension and cohomological dimension for a finitely generated module, we investigate the asymptotic behavior of grades of components of graded local cohomology modules with respect to irrelevant ideal; as long as we study some artinian and tameness property of such modules.
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011